•前沿进展•
非小细胞肺癌患者表皮生长因子受体酪氨酸激酶抑制剂获得性耐药机制及其与微小RNAs关系的研究进展
刘清华,李振华,李定彪
基金项目:云南省科技厅科技计划重点项目(2018FA044)
650051云南省昆明市,昆明医科大学附属延安医院胸外科
通信作者:李定彪
刘清华,李振华,李定彪.非小细胞肺癌患者表皮生长因子受体酪氨酸激酶抑制剂获得性耐药机制及其与微小RNAs关系的研究进展[J].实用心脑肺血管病杂志,2019,27(2):9-14,19.
LIU Q H,LI Z H,LI D B.Progress on acquired drug-resistance mechanism of EGFR-TKIs and its relation with microRNAs in patients with non-small cell lung cancer[J].Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease,2019,27(2):9-14,19.
肺癌是全球范围内癌症死亡的主要原因[1],其5年生存率仅为18%左右,约85%的肺癌为非小细胞肺癌(non-small cell lung cancer,NSCLC)[2]。表皮生长因子受体(epidermal growth factor receptor,EGFR)基因是NSCLC最常见的驱动基因之一。据统计,存在EGFR基因突变的NSCLC患者数量占我国NSCLC患者总数的38.1%[3]。目前,EGFR基因突变的NSCLC患者首选治疗药物是表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitors,EGFR-TKIs),其在提高客观缓解率(objective remission rate,ORR)及延长无进展生存期(progression-free survival,PFS)方面明显优于含铂双联化疗方案[4],但使用EGFR-TKIs治疗一段时间后患者会出现获得性耐药,从而限制其临床获益持续时间[5]。因此,有必要进一步研究EGFR-TKIs的耐药机制,以开发新的药物来克服EGFR-TKIs的耐药性。
微小RNAs(miRNAs)是一类长度为20~24个碱基的非编码单链RNA分子,其通过与信使RNA(mRNA)的3'-UTR结合而发挥调节转录后基因表达的作用。mRNA的单个3'-UTR可以与许多miRNA相互作用,同时1种miRNA可能靶向多种miRNAs,因此miRNAs构成了生物信息中复杂而重要的调控网络。近年来,miRNAs已被证实参与肺癌耐药性的发生发展,这为miRNAs用于治疗肺癌提供了可能性。本文主要综述了NSCLC患者EGFR-TKIs获得性耐药机制及其与miRNAs关系的研究进展,为开发新一代EGFR-TKIs及将miRNAs作为NSCLC患者诊断和预后判定的生物标志物提供参考。
1 EGFR依赖的耐药机制——EGFR基因突变
1.1 T790M突变 据统计,50%~60%的NSCLC患者存在EGFR基因20外显子的氨基酸位置790处甲硫氨酸取代苏氨酸的T790M突变[6],因此T790M突变是NSCLC患者最常见的获得性耐药机制。由于庞大的甲硫氨酸侧链,T790M引起构象改变,导致空间位阻,进而阻止第一代EGFR-TKIs如吉非替尼(gefitinib)和厄洛替尼(erlotinib)与ATP结合;此外,T790M突变还增加了三磷腺苷(ATP)的亲和力,从而干扰EGFR-TKIs的结合并影响其特异性[7]。HATA等[8]在研究EGFR-TKIs治疗前是否存在T790M突变的肿瘤细胞时发现,T790M突变既可以存在于EGFR-TKIs治疗前,也可以于EGFR抑制期间由耐药细胞发展而成。
1.2 C797S突变 EGFR基因20外显子的点突变C797S是第三代EGFR-TKIs最常见的EGFR依赖耐药机制[9-10]。第三代EGFR-TKIs通过与EGFR 797-半胱氨酸残基共价结合而发挥抗肿瘤作用,但C797S突变(797-半胱氨酸残基被丝氨酸取代)可降低这种结合能力,从而降低EGFR-TKIs治疗效果并增加其耐药性[9-10]。据报道,除奥西替尼(osimertinib)外,C797S突变还可介导其他第三代EGFR-TKIs耐药,如奥莫替尼(olmutinib)[11]、rociletinib[12]和纳扎替尼(nazartinib)[13]。CHABON等[12]分析接受rociletinib治疗的43例肺癌患者发现,仅1例(占2%)患者与T790M顺式(在相同等位基因上)发生C797S突变有关,该比例远低于接受奥西替尼治疗的肺癌患者(22%~40%)。PIOTROWSKA等[14]研究发现,12例接受rociletinib治疗的肺癌患者无一例发生C797S突变,说明C797S突变与rociletinib耐药机制相关的可能性较小。上述证据表明,奥西替尼和rociletinib的耐药机制可能存在一定差异。PIOTROWSKA等[14]结合Guardant Health数据库分析了61例C797S突变的肺腺癌患者血浆样本,其中51例患者(占84%)至少有一种与C797S突变共存的耐药机制〔包括EGFR扩增29例(占48%)、MET扩增10例(占16%)、BRAF V600E 3例(占5%)、PIK3CA突变9例(占15%)〕;此外,C797S突变还可以在个体中进行多克隆。因此,C797S突变共存的耐药机制及多克隆性均突出了EGFR基因突变耐药的异质性。NIEDERST等[10]进行的体外研究证实,存在C797S和T790M反式突变(在不同等位基因上)的肿瘤对第三代EGFR-TKIs具有耐药性,但对第一代EGFR-TKIs联合第三代EGFR-TKIs治疗敏感。
1.3 其他罕见EGFR突变 罕见EGFR突变占所有EGFR突变的10%~18%,主要由20外显子插入,点突变S768I、G719X及L861Q组成。(1)20外显子插入是最常见的罕见EGFR突变,占所有NSCLC患者总数的1.5%~2.5%,约占EGFR基因突变的10%(1%~17%)[15]。最常见的20外显子插入突变类型有V769_D770insASV、D770_N771insNPG、D770_N771insSVD、H773_V774insH和A763_Y764insFQEA,且除A763_Y764insFQEA外,大多数20外显子插入突变被认为与EGFR-TKIs耐药有关。(2)单纯20外显子点突变S768I约占EGFR基因突变的1%,是次常见20外显子突变,其通常存在于复合突变中。YANG等[16]对LUX-Lung 2、LUX-Lung 3及LUX-Lung 6分析发现,8例伴S768I突变的肺癌患者对阿法替尼(afatinib)有反应,但其中7例存在复合突变(5例共存G719X突变,2例共存L858R突变)。(3)18外显子点突变G719X占EGFR基因突变的3%~4%,G719X突变对EGFR-TKIs敏感性的影响远低于T790M经典突变,分析其原因可能是从G转换为A、C或S引起的构象变化改变了与吉非替尼的结合。与T790M突变患者相比,18外显子突变患者中位PFS较短(6.3个月比11.1个月)[17]。(4)21外显子点突变L861Q约占EGFR突变的2%,L861Q突变可导致第一代EGFR-TKIs耐药,但对第三代EGFR-TKIs如阿法替尼、奥西替尼仍敏感。
2 EGFR非依赖的耐药机制
2.1 旁路信号通路激活
2.1.1 MET基因扩增 既往研究表明,在未接受治疗的NSCLC患者中MET基因扩增者仅占2%~4%[18],在存在EGFR基因突变的EGFR-TKIs获得性耐药肺癌患者中MET基因扩增者占5%~22%[19]。ENGELMAN等[20]研究表明,在对吉非替尼敏感的肺癌细胞系HCC827中,MET基因扩增通过驱动人表皮生长因子受体3(ERBB3)而激活下游PI3K/Akt信号轴,从而对吉非替尼产生获得性耐药。NANJO等[21]进行的体外实验表明,MET抑制剂如克唑替尼(crizotinib)可以提高H1975(EGFR-L858R/T790M突变)和HCC827ER(EGFR基因19外显子缺失/c-Met扩增)细胞系对不可逆EGFR-TKIs(如阿法替尼)的敏感性。GOU等[22]研究表明,7%~39%的耐药肺癌患者MET基因扩增和T790M突变共存;CHABON等[12]研究表明,MET基因扩增可能与奥西替尼或rociletinib获得性耐药的NSCLC患者中驱动人表皮生长因子受体2(ERBB2)扩增或EGFR C797S突变共存。
2.1.2 HER2扩增及突变 HER2是ERBB家族成员,其扩增产物介导了无EGFR T790M突变的NSCLC患者对EGFR-TKIs的获得性耐药,EGFR-TKIs获得性耐药患者中HER2扩增者约占13%[23]。PLANCHARD等[24]研究发现,T790M突变患者对奥西替尼的耐药与HER2扩增有关,提示HER2扩增参与了第三代EGFR-TKIs的耐药机制。TAKEZAWA等[25]研究发现,在厄洛替尼治疗情况下,采用小干扰RNA(siRNAs)抑制HER2可阻碍无EGFR T790M突变的PC-9、HCC827、H3255细胞系增殖。CHUANG等[26]研究发现,1%~2%的肺腺癌患者存在HER2基因体细胞突变,该类型突变常见于女性和非吸烟腺癌患者,其在20外显子插入YVMA(p.A775 G776insYVMA)后导致PI3K-Akt和MEK-ERK下游通路激活。
2.1.3 肝细胞生长因子(hepatocyte growth factor,HGF)过表达 MET与其配体HGF结合激活下游PI3K-Akt信号轴是EGFR-TKIs非可逆获得性耐药的另一机制;此外,HGF还可通过促进MET扩增[27]及加强EGFR和被EGFR-TKIs破坏的MET联系而导致EGFR-TKIs获得性耐药[28]。
2.1.4 胰岛素样生长因子1受体(IGF-1R)激活 胰岛素样生长因子(IGF)信号通路由其配体(如胰岛素、IGF-1、IGF-2)、受体(如胰岛素受体、IGF-1R、IGF-2R)和胰岛素样生长因子结合蛋白(insulin-like growth factor binding proteins,IGFBPs)3部分组成。IGF-1R激活是EGFR基因扩增和EGFR基因突变的肿瘤细胞系对吉非替尼产生获得性耐药的另一种机制:当IGF-1R被配体激活后,可介导下游PI3K-Akt-mTOR通路和RAS-RAF-MEK-ERK/MAPK通路激活,进而参与肿瘤细胞的增殖与抗凋亡[29]。由IGF-1R介导的信号主要参与EGFR-TKIs耐药的早期阶段,CORTOT等[30]临床前研究表明,活化的IGF-1R通过激活EGFR基因突变NSCLC细胞中的PI3K-Akt通路而介导达克替尼(dacomitinib)获得性耐药,提示IGF-1R激活与EGFR-TKIs获得性耐药有关。除IGF-1R外,IGFBP3也参与了EGFR-TKIs的获得性耐药,YAMAOKA等[31]研究表明,在PC-9细胞系中IGFBP3水平上调增强了IGF的生物活性,进而激活IGF-1R,导致阿法替尼耐药。
2.1.5 AXL激活 AXL是一种受体酪氨酸激酶(receptor tyrosine kinase,RTK),其高表达与EGFR-TKIs如厄洛替尼获得性耐药有关。ZHANG等[32]研究发现,35例EGFR-TKIs耐药NSCLC患者中7例(占20%)存在AXL高表达,其中2例又合并EGFR T790M突变;在rociletinib耐药的H1975细胞系中观察到AXL激活通常伴有上皮-间质转化(epithelial-mesenchymal transition,EMT),而抑制AXL激活可恢复细胞对rociletinib的敏感性。KIM等[33]研究认为,EGFR-TKIs耐药机制可能与AXL RNA或蛋白质高表达有关,而与遗传改变(如AXL突变或AXL扩增)无关。目前,AXL抑制剂正在研究中,包括具有AXL活性的多靶点激酶抑制剂〔S49076,卡博替尼(cabozantinib),ASLAN002,MGCD265,MGCD516〕及包括NSCLC在内的多种实体瘤特异性AXL抑制剂(BGB324)[34]。
2.1.6 成纤维细胞生长因子受体1(fibroblast growth factor receptor 1,FGFR1)扩增 FGFR1是一种与细胞增殖相关的膜结合RTK。据报道,肺鳞状细胞癌患者中FGFR1扩增者约占19%,约4%的奥西替尼耐药NSCLC患者存在局灶性FGFR1扩增[33,35]。与肺腺癌相比,肺鳞状细胞癌FGFR1高表达更常见[36]。KIM等[33]进行的体外研究发现,FGFR1扩增介导了阿法替尼、奥西替尼获得性耐药,在PC-9细胞(阿法替尼耐药)和HCC4006细胞(奥西替尼耐药)中,FGFR1被其配体FGF2激活,且这些耐药细胞系对FGFR抑制剂如PD173074、阿西替尼(axitinib)、BGJ398敏感。
2.2 下游信号通路异常激活
2.2.1 RAS-RAF-MEK-MAPK通路异常激活 MAPK通路异常激活通常与编码该通路关键蛋白的RAS(KRAS、NRAS和HRAS)、RAF(ARAF、BRAF和CRAF)及MEK1/2基因有关,KRAS突变、扩增及BRAF、NRAS、MEK1突变被认为是第三代EGFR-TKIs(如奥西替尼)获得性耐药的机制[12,37]。KRAS突变包括G12S、G12A、G12D、Q61H、G12D及AL46T[12,37]。EBERLEIN等[38]进行的临床前研究结果显示,NRAS突变包括NRAS错义突变(如新型E63K突变)和NRAS拷贝数增加,且NSCLC耐药细胞系对MEK抑制剂如司美替尼(selumetinib)联合EGFR-TKIs治疗敏感。HO等[39]研究表明,耐药细胞系对BRAF抑制剂康奈非尼(encorafenib)与奥西替尼联合治疗较敏感,BRAF V600E突变是奥西替尼获得性耐药的可能机制。此外,PLANCHARD等[40]进行的Ⅱ期临床试验结果显示,既往接受治疗和未接受治疗的BRAF V600E突变转移性NSCLC患者均表现出对BRAF抑制剂与MEK抑制剂的持久反应和可接受的安全性。
2.2.2 PI3K-Akt-mTOR通路异常激活、PIK3CA突变和PTEN缺失 PI3K-Akt-mTOR通路在调节细胞生长、增殖及控制转录和翻译中发挥了重要作用。YIP[41]研究表明,50%~70%的EGFR-TKIs获得性耐药NSCLC患者存在PI3K-Akt-mTOR通路异常激活及磷酸化Akt过表达。JACOBSEN等[42]研究证实,PI3K-Akt-mTOR通路激活会导致EGFR-TKIs获得性耐药;此外,Akt抑制剂联合EGFR抑制剂将协同抑制伴有EGFR基因突变的NSCLC耐药模型的肿瘤生长及下游靶标PRAS40和FOXO1/3A的磷酸化。
原癌基因PI3KCA是PI3K的催化亚基,PIK3CA突变通常与肺腺癌中的EGFR和KRAS突变共存。PIK3CA突变导致激酶活性增强,继而刺激下游Akt,促进肿瘤细胞增殖和转移。既往研究表明,5%的接受第一代EGFR-TKIs治疗的NSCLC患者获得性耐药与PIK3CA突变有关,且PIK3CA突变与T790M突变可共存[8]。CHABON等[12]研究表明,且PI3KCA突变与其他机制导致的rociletinib耐药有关,43例rociletinib耐药患者中5例(占12%)发现两种PIK3CA基因突变(E545K和E542K)。
PTEN对PI3K-Akt-mTOR通路起负性调节作用,其缺失可减少厄洛替尼诱导的细胞凋亡,并通过Akt和EGFR再激活而诱导EGFR基因突变细胞对厄洛替尼耐药。在吉非替尼耐药PC-9细胞系中,PTEN低表达与Akt磷酸化增高有关[43]。
2.3 组织学与表型转化
2.3.1 EMT EMT是以上皮丧失和间质逐渐形成为特征的一种生物学过程,主要表现为上皮细胞黏附的丧失、间质组分表达及细胞骨架成分改变。EMT激活与NSCLC患者EGFR-TKIs获得性耐药有关。BUONATO等[44]进行的体外研究发现,EMT在对阿法替尼耐药的HCC827细胞系和HCC4006细胞系中被检测到,其使EGFR基因突变的NSCLC细胞对吉非替尼敏感性降低,且采用MEK抑制剂司美替尼预处理细胞可以逆转EMT并使细胞对EGFR抑制剂敏感,提示MEK抑制剂可能有助于减轻EMT导致的EGFR-TKIs获得性耐药。MAHMOOD等[45]研究发现,EGFR和EMT相关蛋白表达增加与肿瘤预后不良有关,提示EMT可作为肿瘤预后标志物。
2.3.2 小细胞转化 EGFR基因突变的肺腺癌向小细胞肺癌(SCLC)组织学转化是重要而罕见的EGFR-TKIs耐药机制,其在3%~14%的EGFR-TKIs获得性耐药患者活检中被检测到[6]。LEE等[46]利用全基因组测序分析了21例晚期EGFR基因突变的NSCLC转化为SCLC的患者,发现伴有EGFR突变的EGFR-TKIs获得性耐药NSCLC和SCLC患者具有共同的克隆起源,且克隆差异在EGFR-TKIs治疗前已经存在,通过沉默Rb和p53的SCLC转化在肺腺癌中更常见,且这种沉默在NSCLC早期阶段便可观察到,提示评估肺腺癌的Rb和p53状态(如Rb突变和p53缺失)可预测EGFR-TKIs耐药后的SCLC转化。LI等[47]研究表明,奥西替尼耐药后SCLC转化的NSCLC患者同时存在p53、PTEN和PIK3CA突变。
3 miRNAs与EGFR-TKIs耐药性的关系
3.1 miRNAs与EMT的关系 ZHONG等[48]研究结果显示,miRNA-30c和miRNA-544a过表达通过下调E-钙黏蛋白并上调波形蛋白而促进EMT。KITAMURA等[49]研究发现,miRNA-134、miRNA-487b及miRNA-23a可促进EMT,诱导肺腺癌细胞对吉非替尼耐药,而抑制上述miRNA可抑制EMT,逆转转化生长因子β1(TGF-β1)诱导的NSCLC对吉非替尼耐药。KIM等[50]研究发现,抑制miRNA-1246和miRNA-1290可降低NSCLC患者EMT标志物的表达。YAMASHITA等[51]研究发现,miRNA-221和miRNA-222通过TRPS1上调ZEB2(EMT诱导基因)而发挥致癌作用,因此抑制miRNA-221和miRNA-222可降低NSCLC细胞侵袭能力。LEE等[52]研究发现,miRNA-147通过调节细胞侵袭和增殖而逆转TGF-β1诱导的EMT,通过增加CDH1表达和降低ZEB1表达而恢复细胞对EGFR-TKIs的敏感性;此外,CRIPTO1过表达诱导EGFR基因突变的NSCLC患者对厄洛替尼耐药,而下调miRNA-205可促进CRIPTO1过表达,激活SRC和ZEB1,进而促进EMT。GAROFALO等[53]研究发现,PKC-ε、SRC和Dicer可通过激活Akt而促进吉非替尼耐药,而miRNA-103和miRNA-203可抑制Akt表达,减少间质标志物并上调上皮细胞连接蛋白的表达,从而逆转吉非替尼耐药。最近有研究发现,miRNA-181b-5p作为一种新型致癌基因,可通过调节TGF-β1而诱导EMT,miRNA-92a通过激活NSCLC中的PI3K-Akt-mTOR通路而诱导EMT[54-55]。
3.2 miRNAs与MET的关系 GAROFALO等[53]研究发现,miRNA-30b和miRNA-30c可促进EGFR和MET扩增,抑制细胞凋亡,促进NSCLC患者对吉非替尼耐药;此外,miRNA-221和miRNA-222除具有上调EMT作用外,还可促进EGFR和MET扩增,抑制凋亡酶激活因子(apoptotic protease activating factor-1,APAF-1),促进NSCLC患者对吉非替尼耐药,提示抗miRNA-221、miRNA-222、miRNA-30c或使用MET抑制剂可以减轻NSCLC患者对吉非替尼耐药。ACUNZO等[56]研究发现,miRNA-27a可通过下调Sprouty2而提高MET和EGFR蛋白表达,直接或间接地靶向MET和EGFR。ZHEN等[57]研究发现,miRNA-200a可通过灭活EGFR和MET而逆转患者对吉非替尼耐药。ZHOU等[58]研究miRNA-34a在吉非替尼耐药细胞系(HCC827和PC-9细胞系)中的作用时发现,miRNA-34a过表达通过靶向MET而抑制细胞生长和促进细胞凋亡。LUO等[59]分析MET和miRNA-449a关系时发现,miRNA-449a低表达的NSCLC组织中MET高表达,miRNA-449a高表达的NSCLC组织中MET低表达。ACUNZO等[60]研究miRNA-130a在肿瘤坏死因子相关凋亡诱导配体(tumor necrosis factor-related apoptosis inducing ligand,TRAIL)耐药细胞系中的表达时发现,过表达的miRNA-130a可通过降低MET水平而减轻NSCLC细胞中TRAIL耐药性。
3.3 miRNAs与PTEN的关系 KITAMURA等[49]进行的体外研究发现,miRNA-134和miRNA-487b除可诱导EMT外,还可以直接靶向MAGI2,影响EGFR-TKIs获得性耐药,而抑制miRNA-134和miRNA-487b可导致NSCLC细胞中PTEN稳定性的丧失。致癌因子miRNA-155靶向细胞因子信号转导抑制因子1(suppressor of cytokine signaling 1,SOCS1)基因,并通过激活Akt及抑制PTEN而发挥作用[61]。LI等[62]研究发现,miRNA-21过表达可通过激活Akt、ERK及抑制PTEN表达而诱导NSCLC对EGFR-TKIs(如吉非替尼)耐药,并促进NSCLC细胞增殖。
4 小结与展望
EGFR-TKIs获得性耐药机制的复杂性给NSCLC患者采用EGFR-TKIs治疗带来挑战,目前是否将第三代EGFR-TKIs用于NSCLC患者一线治疗尚不能确定。第四代EGFR-TKIs(如EAI001和EAI045)正在研发中,其与西妥昔单抗(cetuximab)联合应用研究已在细胞和小鼠模型中展开[9]。不同种类miRNAs通过调节不同信号通路而参与EGFR-TKIs获得性耐药,其中抑制EGFR-TKIs耐药和逆转EGFR-TKIs耐药的miRNAs使NSCLC患者长期使用EGFR-TKIs治疗成为可能,但miRNAs与EGFR-TKIs获得性耐药的具体关系尚未完全阐明,有待进一步研究探索。
参考文献
[1]SIEGEL R L,MILLER K D,JEMAL A.Cancer statistics,2018[J].CA Cancer J Clin,2018,68(1):7-30.DOI:10.3322/caac.21442.
[2]BOLOKER G,WANG C,ZHANG J.Updated statistics of lung and bronchus cancer in United States(2018)[J].J Thorac Dis,2018,10(3):1158-1161.DOI:10.21037/jtd.2018.03.15.
[3]YATABE Y,KERR K M,UTOMO A,et al.EGFR mutation testing practices within the Asia Pacific region:results of a multicenter diagnostic survey[J].J Thorac Oncol,2015,10(3):438-445.DOI:10.1097/jto.0000000000000422.
[4]GEATER S L,XU C R,ZHOU C,et al.Symptom and Quality of Life Improvement in LUX-Lung 6:An Open-Label Phase III Study of Afatinib Versus Cisplatin/Gemcitabine in Asian Patients With EGFR Mutation-Positive Advanced Non-small-cell Lung Cancer[J].J Thorac Oncol,2015,10(6):883-889.DOI:10.1097/JTO.0000000000000517.
[5]NEEL D S,BIVONA T G.Resistance is futile:overcoming resistance to targeted therapies in lung adenocarcinoma[J].NPJ Precis Oncol,2017,1.pii:3.DOI:10.1038/s41698-017-0007-0.
[6]YU H A,ARCILA M E,REKHTMAN N,et al.Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J].Clin Cancer Res,2013,19(8):2240-2247.DOI:10.1158/1078-0432.ccr-12-2246.
[7]KOBAYASHI S,BOGGON T J,DAYARAM T,et al.EGFR mutation and resistance of non-small-cell lung cancer to gefitinib[J].N Engl J Med,2005,352(8):786-792.DOI:10.1056/NEJMoa044238.
[8]HATA A N,NIEDERST M J,ARCHIBALD H L,et al.Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition[J].Nat Med,2016,22(3):262-269.DOI:10.1038/nm.4040.
[9]JIA Y,YUN C H,PARK E,et al.Overcoming EGFR(T790M)and EGFR(C797S)resistance with mutant-selective allosteric inhibitors[J].Nature,2016,534(7605):129-132.DOI:10.1038/nature17960.
[10]NIEDERST M J,HU H,MULVEY H E,et al.The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies[J].Clin Cancer Res,2015,21(17):3924-3933.DOI:10.1158/1078-0432.ccr-15-0560.
[11]SONG H N,JUNG K S,YOO K H,et al.Acquired C797S Mutation upon Treatment with a T790M-Specific Third-Generation EGFR Inhibitor(HM61713)in Non-Small Cell Lung Cancer[J].J Thorac Oncol,2016,11(4):e45-47.DOI:10.1016/j.jtho.2015.12.093.
[12]CHABON J J,SIMMONS A D,LOVEJOY A F,et al.Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients[J].Nat Commun,2016,7:11815.DOI:10.1038/ncomms11815.
[13]TAN D S W,KIM D W,LEIGHL N B,et al.Genomic profiling of resistant tumor samples following progression on EGF816,a third generation,mutant-selective EGFR tyrosine kinase inhibitor(TKI),in advanced non-small cell lung cancer(NSCLC)[J].J Clin Oncol,2017,35(15_Suppl):11506.DOI:10.1200/JCO.2017.35.15_suppl.11506.
[14]PIOTROWSKA Z,NIEDERST M J,KARLOVICH C A,et al.Heterogeneity Underlies the Emergence of EGFRT790 Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR Inhibitor[J].Cancer Discov,2015,5(7):713-722.DOI:10.1158/2159-8290.cd-15-0399.
[15]WU J Y,WU S G,YANG C H,et al.Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response[J].Clin Cancer Res,2008,14(15):4877-4882.DOI:10.1158/1078-0432.CCR-07-5123.
[16]YANG J C,SEQUIST L V,GEATER S L,et al.Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations:a combined post-hoc analysis of LUX-Lung 2,LUX-Lung 3,and LUX-Lung 6[J].Lancet Oncol,2015,16(7):830-838.DOI:10.1016/S1470-2045(15)00026-1.
[17]JIANG J,GREULICH H,JÄNNE P A,et al.Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epidermal growth factor receptor mutants induces gefitinib-sensitive cell cycle progression[J].Cancer Res,2005,65(19):8968-8974.DOI:10.1158/0008-5472.CAN-05-1829.
[18]SCHILDHAUS H U,SCHULTHEIS A M,RUSCHOFF J,et al.MET amplification status in therapy-naïve adeno-and squamous cell carcinomas of the lung[J].Clin Cancer Res,2015,21(4):907-915.DOI:10.1158/1078-0432.ccr-14-0450.
[19]SCHEFFLER M,MERKELBACH-BRUSE S,BOS M,et al.Spatial Tumor Heterogeneity in Lung Cancer with Acquired Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance:Targeting High-Level MET-Amplification and EGFR T790M Mutation Occurring at Different Sites in the Same Patient[J].J Thorac Oncol,2015,10(6):e40-43.DOI:10.1097/jto.0000000000000503.
[20]ENGELMAN J A,ZEJNULLAHU K,MITSUDOMI T,et al.MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J].Science,2007,316(5827):1039-1043.DOI:10.1126/science.1141478.
[21]NANJO S,YAMADA T,NISHIHARA H,et al.Ability of the Met kinase inhibitor crizotinib and new generation EGFR inhibitors to overcome resistance to EGFR inhibitors[J].PLoS One,2013,8(12):e84700.DOI:10.1371/journal.pone.008470.
[22]GOU L Y,LI A N,YANG J J,et al.The coexistence of MET over-expression and an EGFR T790M mutation is related to acquired resistance to EGFR tyrosine kinase inhibitors in advanced non-small cell lung cancer[J].Oncotarget,2016,7(32):51311-51319.DOI:10.18632/oncotarget.9697.
[23]SAAD S,HUANG K,HALMOS B.Overcoming resistance to EGF receptor tyrosine kinase inhibitors in EGFR-mutated NSCLC[J].Lung Cancer Management,2014,3(6):459-476.
[24]PLANCHARD D,LORIOT Y,ANDRÉ F,et al.EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients[J].Ann Oncol,2015,26(10):2073-2078.DOI:10.1093/annonc/mdv319.
[25]TAKEZAWA K,PIRAZZOLI V,ARCILA M E,et al.HER2 amplification:a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation[J].Cancer Discov,2012,2(10):922-933.DOI:10.1158/2159-8290.cd-12-0108.
[26]CHUANG J C,STEHR H,LIANG Y,et al.ERBB2-Mutated Metastatic Non-Small Cell Lung Cancer:Response and Resistance to Targeted Therapies[J].J Thorac Oncol,2017,12(5):833-842.DOI:10.1016/j.jtho.2017.01.023.
[27]TURKE A B,ZEJNULLAHU K,WU Y L,et al.Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC[J].Cancer Cell,2010,17(1):77-88.DOI:10.1016/j.ccr.2009.11.022.
[28]YAMADA T,MATSUMOTO K,WANG W,et al.Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in EGFR-T790M mutant lung cancer[J].Clin Cancer Res,2010,16(1):174-183.DOI:10.1158/1078-0432.ccr-09-1204.
[29]LI H,BATTH I S,QU X,et al.IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy:overview and new insights[J].Mol Cancer,2017,16(1):6.DOI:10.1186/s12943-016-0576-5.
[30]CORTOT A B,REPELLIN C E,SHIMAMURA T,et al.Resis-tance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway[J].Cancer Res,2013,73(2):834-843.DOI:10.1158/0008-5472.can-12-2066.
[31]YAMAOKA T,OHMORI T,OHBA M,et al.Distinct Afatinib Resistance Mechanisms Identified in Lung Adenocarcinoma Harboring an EGFR Mutation[J].Mol Cancer Res,2017,15(7):915-928.DOI:10.1158/1541-7786.mcr-16-0482.
[32]ZHANG Z,LEE J C,LIN L,et al.Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer[J].Nat Genet,2012,44(8):852-860.DOI:10.1038/ng.2330.
[33]KIM T M,SONG A,KIM D W,et al.Mechanisms of Acquired Resistance to AZD9291:A Mutation-Selective,Irreversible EGFR Inhibitor[J].J Thorac Oncol,2015,10(12):1736-1744.DOI:10.1097/jto.0000000000000688.
[34]GAY C M,BALAJI K,BYERS L A.Giving AXL the axe:targeting AXL in human malignancy[J].Br J Cancer,2017,116(4):415-423.DOI:10.1038/bjc.2016.428.
[35]PIOTROWSKA Z,THRESS K S,MOORADIAN M,et al.MET amplification(amp)as a resistance mechanism to osimertinib[J].J Clin Oncol,2017,35(15_suppl):9020.DOI:10.1200/JCO.2017.35.15_suppl.9020.
[36]DUTT A,RAMOS A H,HAMMERMAN P S,et al.Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer[J].PLoS One,2011,6(6):e20351.DOI:10.1371/journal.pone.0020351.
[37]RAMALINGAM S S,YANG J C,LEE C K,et al.Osimertinib As First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer[J].J Clin Oncol,2018,36(9):841-849.DOI:10.1200/jco.2017.74.7576.
[38]EBERLEIN C A,STETSON D,MARKOVETS A A,et al.Acqu-ired Resistance to the Mutant-Selective EGFR Inhibitor AZD9291 Is Associated with Increased Dependence on RAS Signaling in Preclinical Models[J].Cancer Res,2015,75(12):2489-2500.DOI:10.1158/0008-5472.can-14-3167.
[39]HO C C,LIAO W Y,LIN C A,et al.Acquired BRAF V600E Mutation as Resistant Mechanism after Treatment with Osimertinib[J].J Thorac Oncol,2017,12(3):567-572.DOI:10.1016/j.jtho.2016.11.2231.
[40]PLANCHARD D,SMIT E F,GROEN H J M,et al.Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer:an open-label,phase 2 trial[J].Lancet Oncol,2017,18(10):1307-1316.DOI:10.1016/s1470-2045(17)30679-4.
[41]YIP P Y.Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin(PI3K-Akt-mTOR)signaling pathway in non-small cell lung cancer[J].Transl Lung Cancer Res,2015,4(2):165-176.DOI:10.3978/j.issn.2218-6751.2015.01.04.
[42]JACOBSEN K,BERTRAN-ALAMILLO J,MOLINA M A,et al.Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer[J].Nat Commun,2017,8(1):410.DOI:10.1038/s41467-017-00450-6.
[43]YAMAMOTO C,BASAKI Y,KAWAHARA A,et al.Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations[J].Cancer Res,2010,70(21):8715-8725.DOI:10.1158/0008-5472.CAN-10-0043.
[44]BUONATO J M,LAZZARA M J.ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition[J].Cancer Res,2014,74(1):309-319.DOI:10.1158/0008-5472.can-12-4721.
[45]MAHMOOD M Q,WARD C,MULLER H K,et al.Epithelial mesenchymal transition(EMT)and non-small cell lung cancer(NSCLC):a mutual association with airway disease[J].Med Oncol,2017,34(3):45.DOI:10.1007/s12032-017-0900-y.
[46]LEE J K,LEE J,KIM S,et al.Clonal History and Genetic Predictors of Transformation Into Small-Cell Carcinomas From Lung Adenocarcinomas[J].J Clin Oncol,2017,35(26):3065-3074.DOI:10.1200/jco.2016.71.9096.
[47]LI L,WANG H,LI C,et al.Transformation to small-cell carcinoma as an acquired resistance mechanism to AZD9291:A case report[J].Oncotarget,2017,8(11):18609-18614.DOI:10.18632/oncotarget.14506.
[48]ZHONG Z,XIA Y,WANG P,et al.Low expression of microRNA-30c promotes invasion by inducing epithelial mesenchymal transition in non-small cell lung cancer[J].Mol Med Rep,2014,10(5):2575-2579.DOI:10.3892/mmr.2014.2494.
[49]KITAMURA K,SEIKE M,OKANO T,et al.MiR-134/487b/655 cluster regulates TGF-β-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells[J].Mol Cancer Ther,2014,13(2):444-453.DOI:10.1158/1535-7163.mct-13-0448.
[50]KIM G,AN H J,LEE M J,et al.Hsa-miR-1246 and hsa-miR-1290 are associated with stemness and invasiveness of non-small cell lung cancer[J].Lung Cancer,2016,91:15-22.DOI:10.1016/j.lungcan.2015.11.013.
[51]YAMASHITA R,SATO M,KAKUMU T,et al.Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells[J].Cancer Med,2015,4(4):551-564.DOI:10.1002/cam4.412.
[52]LEE C G,MCCARTHY S,GRUIDL M,et al.MicroRNA-147 induces a mesenchymal-to-epithelial transition(MET)and reverses EGFR inhibitor resistance[J].PLoS One,2014,9(1):e84597.DOI:10.1371/journal.pone.0084597.
[53]GAROFALO M,ROMANO G,DI LEVA G,et al.EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers[J].Nat Med,2011,18(1):74-82.DOI:10.1038/nm.2577.
[54]LI X,HAN J,ZHU H,et al.miR181b5p mediates TGF-β1-induced epithelial-to-mesenchymal transition in non-small cell lung cancer stem-like cells derived from lung adenocarcinoma A549 cells[J].Int J Oncol,2017,51(1):158-168.DOI:10.3892/ijo.2017.4007.
[55]LU C,SHAN Z,HONG J,et al.MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis[J].Int J Oncol,2017,51(1):235-244.DOI:10.3892/ijo.2017.3999.
[56]ACUNZO M,ROMANO G,PALMIERI D,et al.Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2[J].Proc Natl Acad Sci USA,2013,110(21):8573-8578.DOI:10.1073/pnas.1302107110.
[57]ZHEN Q,LIU J,GAO L,et al.MicroRNA-200a Targets EGFR and c-Met to Inhibit Migration,Invasion,and Gefitinib Resistance in Non-Small Cell Lung Cancer[J].Cytogenet Genome Res,2015,146(1):1-8.DOI:10.1159/000434741.
[58]ZHOU J Y,CHEN X,ZHAO J,et al.MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET[J].Cancer Lett,2014,351(2):265-271.DOI:10.1016/j.canlet.2014.06.010.
[59]LUO W,HUANG B,LI Z,et al.MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met[J].PLoS One,2013,8(5):e64759.DOI:10.1371/journal.pone.0064759.
[60]ACUNZO M,VISONE R,ROMANO G,et al.miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222[J].Oncogene,2012,31(5):634-642.DOI:10.1038/onc.2011.260.
[61]XUE X,LIU Y,WANG Y,et al.MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1,SOCS6,and PTEN[J].Oncotarget,2016,7(51):84508-84519.DOI:10.18632/oncotarget.13022.
[62]LI B,REN S,LI X,et al.MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer[J].Lung Cancer,2014,83(2):146-153.DOI:10.1016/j.lungcan.2013.11.003.
(收稿日期:2018-11-23;修回日期:2019-02-20)
(本文编辑:谢武英)